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1. In a space of » dimensions, where x!, x%, . ..., x" are general co-
ordinates, the equations of the paths are

d (d ., da dx’) da (def gt dx’)
ax i, &% ox X 4 ) o (11
dt (alt2 t e, aw T (.1

dt

where ¢ is a general parameter and T are functions of the x’s such that
ik = Tije .
For a particular path, that is, an integral curve of equations (1.1) we
have
' | dddd _ dYf
Tig——=0—>
dai? dt dt dt

where ¢ is a determinate function of ¢. If we define a parameter s by

dS — efpdl
dt ’

the above equations become
' | dod dot

ds? ij Z{ _d:g— = 0. (1.2)
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Thus the parameter s, which we call the afine parameter of the path,
is the analogue of the arc of a geodesic in a Riemannian space.

When we effect a general transformation of coordinates x* into cobr-
dinates x’* and require that s is not changed but that we get equations of
the form (1.2) with «* and P}k replaced by x'* and I‘;{, we get

0%’ e ox'fox'r o't
oot T T g oF ~ T =0 (1.3)
where the indices take the values 1 to #» and the summation convention
of a repeated index is used.! Functions I and I'y? related as in (1.3)
are called the coefficients of an affine connection in the two codrdinate
systems and the geometry based upon them, an affine geometry of paths.

2. When we do not require that s is not changed by the transformation,
and consequently that equations (1.1) are transformed into analogous ones
in the primes (since ¢ is a general parameter, there is no loss of generality
in using it in both sets of equations), we obtain ‘

(ax'"A, ox' A)dxdx’dx"

i T ot di dt dt
where
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‘.x = —— F « ——— — " — 2.1
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Since the above condition must be satisfied for all the paths: we must
have

ox'™ ox'? ox'® ox'?
T AT AT I AT) c45-2 a5 =0. 22
o T o ,k+ax, o k+ak T ok Y 22)

i

Multiplying by bb and summing for 7 and a, we obtain in consequence

of (2.1)
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When the expressions (2.3) are substituted

where A is the jacobian

in (2.2), the latter are satisfied identically. Hence the conditions upon
the I''s and I'"’s are given by combining (2.1) and (2.3), namely,
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where
: ; 1 ; i
e = The — ——t (6,1'1‘2): + 3krzi) (2.5)

and

6= log A. 2.6
_Hog ‘ (2.6)

If there is not a change of coérdinates, but merely of the affine parameters,
it follows that H,k = II,k, where II,,, is formed as in (2.5) from a set of
T's. These functions IIj, were first obtained by T. Y. Thomas in
another manner? and were called the coefficients of projective connections
and the geometry of such connections projective geometry of paths.

From (1.3) it follows that

I = T3 °’;, +(n +1)— @)

Moreover, when (2.7) were satisfied, equations (2.4) reduce to (1.3).

3. The equations of the preceding section may be used to define
transformations of an affinely connected manifold into itself in such a
manner that paths are transformed into paths. In this case the conditions
of the problem are given by (2.4) on the assumption that I‘,'-}; are the
same functions of the x’s as the I''s with the same indices are of the «x’s.
If the transformations form a continuous group of r parameters, they may
be considered as generated by r infinitesimal transformations. Ac-
cordingly we consider the question of infinitesimal transformations.

Consider an infinitesimal transformation defined by

= & 4 Eou, 3.1)

where the £'s are functions of the x’s and du is an infinitesimal. Since
by hypothesis the I'’s are the same functions of the x’s as the correspond-
ing I'”’s are of the x’s, the same is true of the II’s and II"’s.

Accordingly we have

I = W + °“fk i thou, (3.2)

neglecting infinitesimals of the second and higher orders; this will be done
in what follows. From (3.1) it follows that the determinant A of the
transformation is given by
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A—1+bE

and consequently from (2.6)
2 .
0 _ 1 % (3.3)
ox* n+10x"0x'

When these values are substituted in (2.4), we obtain, on neglecting the
multiplier éu,
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Because of (2.5) these equations become
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We remark that when the first term of (3.4) is contracted for « and j,
we get (n + 1)¢p;. Equations (3.4) may be written in the form

Eﬁ] nguk + 6;“101 + B;‘Pj ’ (36)

where one or more indices preceded by a comma indicate covariant dif-
ferentiation with respect to the I's and BY; are the components of the
affine curvature tensor. - Contracting for » and 7, we have

£y — By = (n + 1)g;. @)

If the affine parameter s is unaltered by the infinitesimal transformation,
it follows from (2.7) and (3.3) that ¢; as defined by (3.5) are zero. In
this case equations (3.6) become

Eﬁ: Ek B ijk - (38)

According as ¢'s satisfy (3.6) or (3.8) we say that equations (3.1) define
a projective or affine infinitesimal displacement of the space into itself.

4. Suppose that we have a solution £ of (3.6) and (3.7), and that the
cobrdinates x* are chosen so that in this codrdinate system?
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1=1 £=0 » (a=2,...,n). (41)
In this case equations (3.6) reduce to
or} i i
% = Sor + Sy (4.2)
ox! ‘
from which we have
OIL};,
e 4.3
>l (4.3)

In consequence of these equations we have:

When an affinely connected space admiis a projective or affine infinitesimal
displacement of the space into itself, the finite group G, generated by it trans-
forms paths into paths.

In fact, for the chosen codrdinate system the equations of the finite
group are

1 =x4+a & =zx" (a=2....m)

where a is a parameter. For this transformation equations (2.4) reduce
to I, = I In consequence of (4.3) this condition is satisfied for a
projective displacement. For an affine displacement we have from (4.2)
that T’ is independent of x! so that the theorem follows in this case also.
Moreover, we have shown incidentally that: -

The most general affinely connected manifold which admils a finite group
G, of affine displacements into itself is given by taking for T% functions of
(n—1) of the codrdinates.

5. ‘The conditions of integrability of equations (3.6) are

& Bius—E Bl + & Bl + £ B + £ Birn=0i0in—8k0i1 + 801k — or2)-

By means of these equations it can be shown that if & and & are solutions
of (3.6) and X,f and X,f are the corresponding generators, then the Pois-
son operator (X1 X»—X,X1)f defines another projective or affine displace-
ment, according as ¢; are different from zero, or are zero.

For a Riemannian geometry motions are affine displacements and the
displacements which send geodesics into geodesics without preserving the
arc are projective.* In these cases the equations are obtained by replac-
ing T% by the Christoffel symbols of the second kind.

The question of the existence of solutions of (3.6) or (3.8), together with
further developments of this theory, will be presented in a later paper.
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